

Manual Técnico

INVERSORES DE FREQUÊNCIA

AG Drive Pro

Sumário

Capítulo 1 – Início Rápido	3
1.1 Lista de parâmetros	3
1.2 Reconhecendo a interface homem-máquina	8
1.3 Mensagens da IHM	9
Capítulo 2 – Orientações de Segurança	11
2.1 Simbologia de Segurança	11
2.2 Precauções de segurança	11
2.3 Aterramento	13
2.4 Solução de falhas	14
Capítulo 3 – Instalação e Montagem	17
3.1 Condições ambientais	17
3.2 Instalação mecânica	17
3.3 Instalação elétrica	22
3.4 Proteções	32
Capítulo 4 – Descrição dos parâmetros	33
4.1 Parâmetros de visualização	33
4.2 Parâmetros de escrita	34
Capítulo 5 – Comunicação Modbus RTU	49
5.1 informações preliminares	49
5.2 O protocolo	53
5.3 Controlando o inversor via Modbus	57
5.4 Recomendações de implementação da comunicação <i>Modbus</i>	57
Capítulo 6 – Especificações Técnicas	59
Capítulo 7 - Garantia	59

Capítulo 1 – Início Rápido

1.1 Lista de parâmetros

Parâm.	Função	Faixa de valores	Valor de fábrica	Reg. Modbus
P001	Visualização Frequência de saída	0,00 a 500,0 Hz	-	0
P002	Visualização tensão barramento CC	0 a 430 V	-	1
P003	Visualização corrente de saída do inversor	0 a 24,0 A	-	2
P004	Visualização tensão de saída do inversor	0 a 400 V	-	3
P005	Visualização temperatura do módulo IGBT	0 a 100 ºC ou ""	-	4
P006	Visualização dos 5 últimos erros gerados no inversor	E002 a E009	-	5
P007	Parâmetro para bloqueio de alteração	28 = Desbloqueio / bloqueio do inversor	0	6
P008	Parâmetro para reset de fábrica	103 = Reset de fábrica	-	7
P009	Visualização versão do software do inversor		-	8
P010	Parada por rampa / parada livre	0 = Parada por rampa 1 = Parada livre	0	9
P011	Rampa de aceleração	0,1 a 600,0 s	10,0 s	10
P012	Rampa de desaceleração	0,1 a 600,0 s	10,0 s	11
P013	2º Rampa de aceleração	0,1 a 600,0 s	10,0 s	12
P014	2º Rampa de desaceleração	0,1 a 600,0 s	10,0 s	13
P021	Backup de frequência	0 = Backup desabilitado 1 = Habilitado: usa a última referência 2 = Vai para a referência programada em PO22	1	14
P022	Frequência inicial	P023 a P024	5,00 Hz	15
P023	Frequência mínima	0,00 Hz a P024	5,00 Hz	16
P024	Frequência máxima	P023 a 500,0 Hz	60,00 Hz	17

Parâm.	Função	Faixa de valores	Valor de fábrica	Reg. Modbus
P028	Seleção de unidade padrão no display	0 = Hertz 1 = Ampere 2 = RPM	0	18
P041	Compensação de torque	0 a 30%	5%	19
P043	Frequência de chaveamento	5 kHz a 15 kHz	10 kHz	20
P051	Corrente de sobrecarga	XF2-05 = 0 a 3,4 A XF2-10 = 0 a 5,2 A XF2-20 = 0 a 9,5 A	XF2-05 = 3,4 A XF2-10 = 5,2 A XF2-20 = 9,5 A	21
	Cantuala da camanta	XF2-05 = oFF a 3,4 A	XF2-05 = oFF	
P052	Controle de corrente máxima	XF2-10 = oFF a 5,2 A	XF2-10 = oFF	22
		XF2-20 = oFF a 9,5 A	XF2-20 = oFF	
P053	Auto reset	oFF a 255	oFF	23
P054	Tensão mínima do barramento CC	100 a 200 V	180 V	24
P100	Ganho de entrada analógica	0,1 a 999,0	100,0	25
P101	Tipo de Entrada analógica	0 = 0 a 10 V 1 = 0 a 20 mA 2 = 4 a 20 mA	0	26
P102	Seleção da função dos bornes 7 e 8	0 = Entrada digital DI4 1 = saída em corrente 0 a 20 mA 2 = saída em corrente 4 a 20 mA	0	27
P103	Tipo de saída analógica	 0 = oFF 1 = Indicando a frequência de saída 2 = Indicando a corrente de saída 	0	28
P104	Função da saída à relé	0 = Quando a frequência de saída é igual ao setpoint de frequência 1 = Quando a frequência de	2	29

Parâm.	Função	Faixa de valores	Valor de fábrica	Reg. Modbus
		referência for maior que o valor programado no parâmetro P105		
		2 = Quando a frequência de saída for maior que P105		
		3 = Quando a corrente de saída for maior que P106;		
		4 = Quando o inversor estiver acionado		
		5 = Quando o inversor estiver executando a rampa de desaceleração		
		6 = Enquanto o inversor estiver sem erro		
P105	Frequência saída a relé	P23 a P24	60,00 Hz	30
		XF2-05 = 0 a 3,4 A	XF2-05 = 3,4 A	
P106	Corrente saída a relé	XF2-10 = 0 a 5,2 A	XF2-10 = 5,2	31
		XF2-20 = 0 a 9,5 A	A XF2-20 = 9,5 A	
P201	Multispeed velocidade 1	P23 a P24	5,00 Hz	32
P202	Multispeed velocidade 2	P23 a P24	5,00 Hz	33
P203	Multispeed velocidade 3	P23 a P24	5,00 Hz	34
P204	Multispeed velocidade 4	P23 a P24	5,00 Hz	35
P205	Multispeed velocidade 5	P23 a P24	5,00 Hz	36
P206	Multispeed velocidade 6	P23 a P24	5,00 Hz	37
P207	Multispeed velocidade 7	P23 a P24	5,00 Hz	38
P208	Multispeed velocidade 8	P23 a P24	5,00 Hz	39
P301	Seleção frequência de saída do inversor	0 = Referência pela entrada analógica 1 = Referência pela tecla da IHM 2 = Referência pelo	1	40

Parâm.	Função	Faixa de valores	Valor de fábrica	Reg. Modbus
		potenciômetro eletrônico		
		3 = Referência pela		
		multispeed		
		4 = Modbus		
		0 = Comando pelas teclas da IHM		
		1 = Comando pelas entradas digitais		
		DI 1 = Aciona/Desaciona		
P302	Seleção Comandos do Inversor	• DI 2 = Definido por P304	0	41
		2 = Comando pelas entradas digitais		
		DI 1 = Avanço		
		• DI 2 = Retorno		
		3 = Comando via Modbus		
		0 = Sentido normal		
P303	Sentido de Giro do motor	1 = Sentido oposto	2	42
		2 = Via comando digital		
		0 = Sentido de giro		
		1 = Segunda rampa		
P304	Função da entrada digital DI2	2 = Avança pela primeira rampa e retorna pela segunda rampa	0	43
		3 = Multispeed		
		4 = Habilita geral		
DOOL	Seleção do nível lógico das	0 = Entradas nA	0	44
P305	entradas digitais	1 = Entradas nF		
P401	Frenagem CC % da corrente nominal do motor	0 a 100 %	0 %	45
P402	Duração frenagem partida	oFF a 15,0 s	off	46
P403	Duração frenagem parada	oFF a 15,0 s	oFF	47

Parâm.	Função	Faixa de valores	Valor de fábrica	Reg. Modbus
P404	Frequência frenagem para parada	0,00 a 60,00 Hz	0,00 Hz	48
P501	Banda a ser evitada	0,00 a 25,00 Hz	0,00 Hz	49
P502	Frequência 1 a ser evitada	0,00 a 500,0 Hz	0,00 Hz	50
P503	Frequência 2 a ser evitada	0,00 a 500,0 Hz	0,00 Hz	51
P504	Frequência 3 a ser evitada	0,00 a 500,0 Hz	0,00 Hz	52
P601	Tipo de controle	0 = Controle V/f linear 1 = Controle V/f quadrático	0	53
P602	Frequência nominal do motor	10,00 a 500,0 Hz	60,00 Hz	54
P603	Rotação nominal do motor	0 a 9999 RPM	0	55
P604	Corrente nominal do motor	XF2-05 = 2,6 A XF2-10 = 4,0 A XF2-20 = 7,3 A	0 a 7,3 A	56
P701	Endereço	1 a 247 ou iHrE	iHrE	57
P702	Baudrate	0 = 9.600 bps 1 = 19.200 bps 2 = 38.400 bps 3 = 115.200 bps	0	58
P703	Paridade	oFF = sem paridade ou None 1 = Par - Even 2 = Ímpar - Odd	oFF	59
P704	Watchdog	oFF a 100,0 s	oFF	60

Tabela 1.1.1 – Guia rápido de parâmetros do inversor

1.2 Reconhecendo a interface homem-máquina

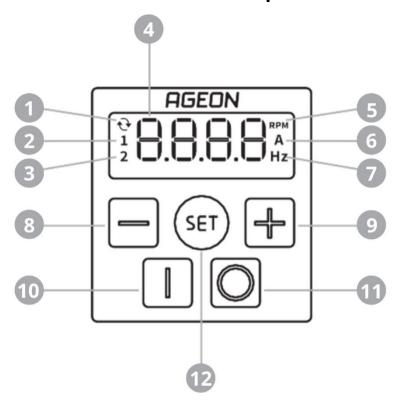


Figura 1.2.1 – Interface Homem-Máquina

Número	Nome Função
1	Quando aceso, indica inversão no sentido de giro.
2	Quando aceso, indica que a saída à relé está ativa
3	Quando aceso, indica que a segunda rampa está ativa. Quando piscando, indica que o controle de corrente máxima está ativo.
4	Display de IHM.
5	Indica que o valor exibido no display está em rotações por minuto. Para que esta visualização funcione, deve-se configurar a RPM máxima do motor em P603.
6	Indica que o valor exibido no display está em Ampere.
7	Indica que o valor exibido no display está em Hertz.
8	Tecla utilizada para decrementar valores.
9	Tecla utilizada para incrementar valores.
10	Aciona o motor quando P302 = 0 Mantido pressionado, executa alteração do sentido de giro.
11	Desaciona o driver quando P302 = 0

Quando clicada na tabela de parâmetros, é utilizada para entrar ou sair dos parâmetros.

Quando clicada na tela de operação, troca a variável exibida no display entre frequência, corrente ou RPM.

Tabela 1.2.2 – Conhecendo a IHM

1.3 Mensagens da IHM

Mensagem de operação

Mensagem	Significado
Rdy	Significa que o inversor está pronto (<i>ready</i>) para operar. Nesse estado o motor fica parado aguardando o comando para ligar.
Sub	Indica que a tensão na entrada do inversor é insuficiente para operar o motor.
Stop	Indica que o inversor foi desabilitado através da DI2. Para mais detalhes, verifique a descrição do parâmetro P304.

Tabela 1.3.1 – Mensagens de operação

Mensagem de erro

Mensagem	Significado
E002 - Sobretensão no barramento CC	Ocorre quando a tensão no barramento é elevada.
E003 - Subtensão no barramento CC	Ocorre quando a tensão no barramento é baixa. Verifique valor programado em P054
E004 - Sobretemperatura	Ocorre quando o módulo IGBT atinge a temperatura máxima.
E005 - Sobrecarga	Ocorre quando a corrente de saída (P003) ultrapassa o máximo programado em P051. O tempo de atuação da proteção de sobrecarga e a consequente geração deste erro segue a curva mostrada na Figura 1.3.2

Mensagem	Significado
	3,0 2,5 1,0 0,5 0,5 Tempo (s) Figura 1.3.2
E006 - Sobrecorrente por hardware	Quando um aumento abrupto no valor de corrente é detectado em um período muito curto de tempo, sendo considerado uma corrente de curto-circuito.
E007 - Falha de hardware	Caso ocorra, entre em contato com o suporte técnico da Ageon.
E008 – Falta de fase na saída	Ocorre quando o inversor detecta a ausência de uma das fases do motor.
E009 - Falha de comunicação com a IHM remota ou Modbus	Quando nenhuma mensagem válida é recebida via Modbus após o tempo total do temporizador watchdog (P704) ou se houver perda de comunicação com a IHM Remota.

Tabela 1.3.3 – Mensagens de erro

Capítulo 2 - Orientações de Segurança

2.1 Simbologia de Segurança

PERIGO!

Aviso de atenção para eletricidade com nível de tensão perigoso podendo causar morte/ferimento ou dano ao equipamento.

ATENÇÃO!

Aviso de atenção geral apontando para condições diferentes das causadas por eletricidade e podem causar morte ou ferimento ou dano ao equipamento.

CUIDADO!

Aviso para componentes sensíveis e descargas eletrostáticas (ESD).

NOTA

Indica informações importantes.

2.2 Precauções de segurança

PERIGO!

Quando em operação, este dispositivo pode ocasionar choque elétrico caso seja manuseado de maneira incorreta. O descumprimento dessas recomendações pode levar à morte, ferimentos ou dano ao equipamento.

- A instalação e manutenção do inversor deve ser efetuada por um profissional qualificado para tal função;
- Antes de efetuar a instalação ou manutenção do inversor, certifique-se que o mesmo se encontra desenergizado;
- Proteja outras partes energizadas durante a instalação;
- Certifique-se que os circuitos de alimentação e saída do inversor possuem aterramento de acordo com a ABNT NBR 5410;

- Siga as normas de segurança em instalações elétricas (NR 10) e segurança no trabalho (NR 12);
- Figue atento a inicialização involuntária do dispositivo, sempre desligue o inversor antes de realizar qualquer alteração de parâmetros e certifique-se que a saída não pode ser habilitada remotamente durante a programação;
- Somente configure a opção de auto reset após a certificação de que todo o processo funciona de maneira segura;
- Nunca tente alterar ou mexer nos terminais de potência ou ligação do motor durante operação. Mesmo após desenergizado, estes terminais ainda apresentam risco de choque elétrico;
- Este dispositivo contem capacitores que permanecem energizados após o desligamento. Aguarde pelo menos 5 minutos após o desligamento para manusear o dispositivo.
- Para qualquer tipo de medição de tensão ou corrente em algum periférico do inversor, garanta que o instrumento pertence à classe adequada para tal procedimento;
- Leia e respeite qualquer orientação adicional contida neste manual nas seções subsequentes e nas normas consultadas.

NOTA

Este dispositivo é uma fonte de emissões eletromagnéticas, por isso as seguintes informações devem ser levadas em consideração:

- Sempre que possível, utilize cabos de alimentação blindados, com a blindagem aterrada:
- Mantenha outros equipamentos e dispositivos com baixa imunidade eletromagnética longe do inversor, motor ou protegidos;

ATENÇÃO!

Este dispositivo não deve ser utilizado como equipamento para parada de emergência. Deve-se adequá-lo à norma utilizando os meios recomendados, atendendo a categoria necessária para este fim.

ATENÇÃO!

Este dispositivo controla máquinas girantes que podem estar acopladas a outros equipamentos. O descumprimento das seguintes recomendações pode levar à morte, ferimento ou dano ao equipamento.

- Certifique-se que o inversor não possui nenhum dano antes da primeira operação;
- Atenção a superfícies quentes, o inversor possui dissipador de calor que permanece com temperatura elevada mesmo após o desligamento do dispositivo;
- Não opere o inversor fora do gabinete. Recomenda-se que qualquer manutenção que necessite remover o produto do gabinete seja feita pela assistência técnica;
- Antes de ajustar e operar o inversor, tenha certeza que o motor e outras máquinas girantes que serão acionadas podem operar de maneira segura dentro dos limites do dispositivo;
- Certifique-se que existem circuitos de segurança de acordo com a ABNT NBR 5410 e que estes foram validados;
- Leia e respeite qualquer orientação adicional contida neste manual nas seções subsequentes;

NOTA

Utilize cabos e conectores compatíveis com a potência instalada e de acordo com as normas locais.

2.3 Aterramento

PERIGO!

O inversor e o motor devem estar devidamente aterrados para segurança do usuário e de outros equipamentos. O descumprimento das orientações a seguir pode levar à morte ou ferimentos graves e pode causar falha irreversível ao motor, inversor e outros equipamentos.

- O aterramento do inversor deve estar de acordo com as normas técnicas vigentes (ABNT 5410, NR - 10);
- O terminal de aterramento do inversor e o motor devem ser conectados ao barramento de equipotencialização da instalação;
- Cada inversor e motor terá seu condutor exclusivo;

• O aterramento do motor deve ser conectado ao borne de aterramento do motor no inversor.

NOTA

Em cabos de sinal e controle blindados, uma das extremidades deve ser conectada ao barramento de equipotencialização e a outra extremidade deve ser isolada evitando loop no aterramento.

CUIDADO!

Este dispositivo contém PCIs (Placas de Circuito Impresso) que são sensíveis a descargas eletrostáticas. Não remova o gabinete e manuseie as PCIs. Certifiquese que nenhum outro dispositivo instalado próximo ao inversor seja uma fonte de descargas eletrostáticas.

2.4 Solução de falhas

Cada erro apresentado na lista de mensagens de erro pode possuir uma ou mais causas que devem ser solucionadas para a correta operação do inversor.

PERIGO!

Se existir qualquer dúvida na solução de algum erro gerado durante a operação, contate o suporte técnico.

As possíveis soluções para alguns problemas que geram as mensagens de erros apresentadas anteriormente são apresentadas na tabela a seguir:

Erro	Causa	Possível solução
E002	Sobretensão no barramento CC	 Verifique a tensão de entrada do inversor e certifique-se que a rede elétrica é adequada; Adeque a rede para alimentação do inversor. A tensão da rede deve estar entre 200 Vac e 240 Vac para funcionamento eficiente do inversor; Aumente o tempo da rampa de desaceleração; Se o problema persistir contate o suporte técnico.
E003	Subtensão no barramento CC	 Verifique a tensão de entrada do inversor e certifique-se que a rede elétrica é adequada;

Erro	Causa	Possível solução
		 Adeque a rede para alimentação do inversor. A tensão da
		rede deve estar entre 200 Vac e 240 Vac para funcionamento
		eficiente do inversor;
		 Verifique valor programado em P054;
		Se o problema persistir contate o suporte técnico.
		Realize a limpeza do dissipador;
		 Verifique se a temperatura ambiente de instalação está de
		acordo com as especificações do inversor;
		Certifique-se que há ventilação adequada no ambiente de
		instalação;
F004		Garanta que o local de instalação possua filtros de ar e que
E004	Sobretemperatura	estes estejam limpos;
		Certifique-se que a instalação segue as recomendações da
		seção "Instalação";
		Garanta que a potência de saída está de acordo com as
		especificações do inversor;
		Se o problema persistir contate o suporte técnico.
		Garanta que a potência do motor está de acordo com as
		especificações do inversor;
		 Verifique se o valor de P051 é adequado para a aplicação;
E005	Sobrecarga	Certifique-se que o eixo do motor não está
		bloqueado/travado;
		Garanta que a carga é adequada para a potência do motor;
		Se o problema persistir contate o suporte técnico.
		Certifique-se que não há nenhum curto-circuito entre as
		fases do motor;
		Certifique-se que o eixo do motor não está
	Sobresorrente nor	bloqueado/travado;
E006	Sobrecorrente por hardware	 Aumente o tempo de rampa de aceleração do inversor;
	Haraware	Garanta que a potência do motor está de acordo com as
		especificações do inversor;
		Garanta que a carga é adequada para a potência do motor;
		 Se o problema persistir contate o suporte técnico.
E007	Falha de	• Desligue o inversor e após 5 minutos ligue novamente;
L007	hardware	Se o problema persistir contate o suporte técnico.
EOOS	Falta de fase na	• Garanta que todos os cabos de alimentação do motor estão
E008	saída	devidamente conectados na saída do inversor;

Erro	Causa	Possível solução		
		• Certifique-se que todas as conexões estão firmes e bem fixas		
		nos bornes do inversor;		
		Certifique-se que o motor está em boas condições de		
		operação;		
		Se o problema persistir contate o suporte técnico.		
	Falha na comunicação com IHM Remota ou Modbus	Garanta que há conexão segura entre o inversor e o master		
		da rede Modbus. Se estiver sendo usado IHM Remota,		
		garanta que P701 = iHre		
		Certifique-se que todos os parâmetros de comunicação		
		estão de acordo com os parâmetros do master;		
E009		Garanta a qualidade e a integridade dos cabos utilizados;		
		Certifique-se que os cabos de comunicação estão		
		devidamente distantes de fontes de ruído;		
		 Verifique se o valor do temporizador watchdog (P704) é 		
		adequado para aplicação;		
		Se o problema persistir contate o suporte técnico.		

Tabela 2.4.1 – Solução de falhas

PERIGO!

A adequação da rede elétrica deve ser feita por profissionais qualificados e autorizados.

ATENÇÃO!

Nunca utilize ar comprimido para realizar a limpeza do inversor. Nunca retire o dissipador. Utilize ferramentas adequadas para realizar a limpeza das aletas do dissipador, para garantir a correta circulação de ar.

Capítulo 3 - Instalação e Montagem

3.1 Condições ambientais

ATENÇÃO!

O inversor deve ser instalado em local apropriado e de acordo com as normas de segurança. O descumprimento das recomendações a seguir pode gerar falhas irreversíveis ao inversor e/ou reduzir drasticamente a vida útil do equipamento.

- A temperatura ambiente deve estar entre 0 °C e 50 °C durante toda a operação do inversor;
- Se o inversor for instalado em painel elétrico, certifique-se que há exaustão de ar suficiente para que a temperatura fique dentro dos limites aceitáveis como descrito nas especificações do inversor;
- Certifique-se que o local de instalação está limpo, livre de detritos como limalha metálica ou qualquer outro material condutivo que possa ser aspirado pela entrada de ar do inversor.
- Certifique-se que o local de instalação fornece proteção contra líquidos, gases corrosivos, óleo, luz solar, chuva, umidade excessiva (acima das especificações do inversor) ou maresia;
- O ambiente de instalação não deve sofrer vibração excessiva;
- Este equipamento não pode operar sob atmosferas explosivas ou em zonas específicas classificadas.

3.2 Instalação mecânica

Dimensões

As dimensões do produto são apresentadas na Figura 3.2.1

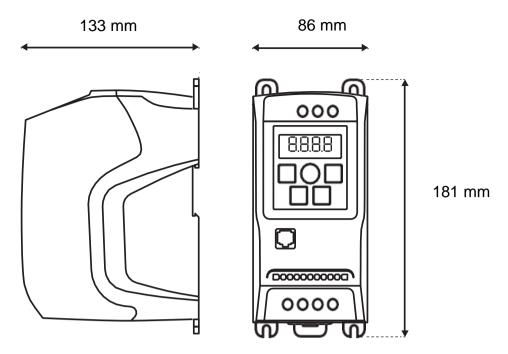


Figura 3.2.1 – Dimensões

Posicionamento e furação

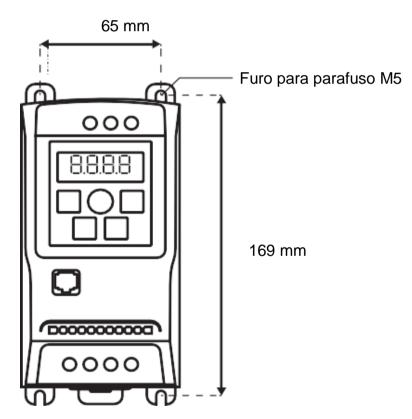


Figura 3.2.2 – Posicionamento e furação

É possível instalar o inversor utilizando os furos de fixação (Figura 3.2.2) ou trilho DIN35 (Figura 3.2.3). As dimensões de montagem devem ser respeitadas. A instalação deve garantir que o inversor esteja apropriadamente fixo e que as entradas e saídas de ar estejam desobstruídas.

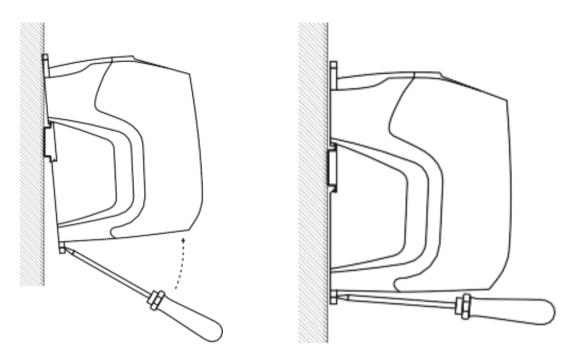


Figura 3.2.3 – Fixação

NOTA

Caso o ambiente de instalação sofra com a vibração excessiva não se recomenda o uso de fixação através do trilho DIN35. Sempre que possível, utilize os furos de fixação com os parafusos adequados.

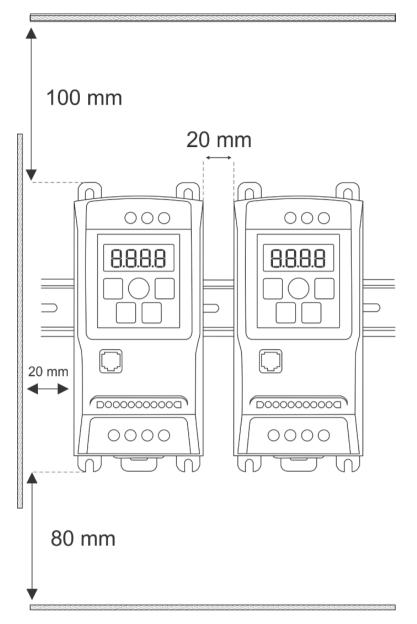


Figura 3.2.4 – Fixação por trilho DIN 35

ATENÇÃO!

Garanta as dimensões de montagem apesentadas da Figura 3.2.4 Risco de dano irreversível ao inversor.

ATENÇÃO!

Nunca realizar a instalação de inversores empilhados, ou seja, com espaçamento horizontal menor que 20 mm mesmo que a distância vertical seja superior a 80 mm. Risco de falha irreversível devido à má circulação do ar nas aletas dos dissipadores.

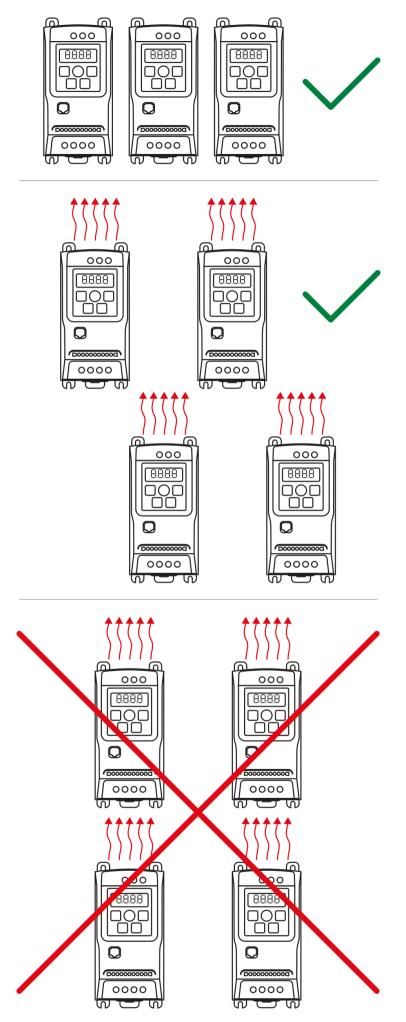


Figura 3.2.5 – Boas práticas para instalação mecânica

ATENÇÃO!

Evite posicionar componentes geradores de calor excessivo próximo ao inversor, mesmo que a distância mínima seja atendida. Isso contribui para um funcionamento mais eficiente do equipamento e reduz as chances de superaquecimento.

3.3 Instalação elétrica

Aspectos gerais referente à compatibilidade eletromagnética

• Para a fiação, recomenda-se a utilização de cabo blindado com seção entre 0,75 mm² e 1,5 mm² com malha de cobre onde deve-se aterrar somente uma das pontas da blindagem. A Figura 3.3.1 apresenta instruções sobre o isolamento da malha.

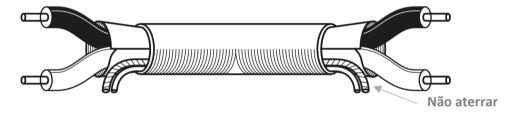


Figura 3.3.1 – Instrução sobre o isolamento da malha

- Contatores, bobinas, solenoides e demais cargas indutivas podem gerar interferências no inversor ou nos sinais de controle. Visto isto, recomenda-se fazer o uso de supressores de ruído onde devem ser conectados diretamente na alimentação CA destas cargas e quando a carga for CC, pode-se fazer o uso de diodos de roda-livre, quando utilizados na saída a relé do inversor.
- Para comunicação e comando, recomenda-se o uso de cabos adequados e blindados com malha de cobre.

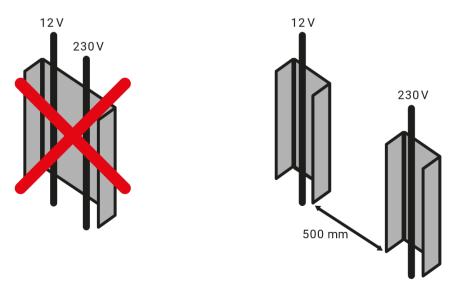


Figura 3.3.2 – Boas práticas para calha de passagem dos cabos

NOTA

Cabos de potência não devem passar juntos com cabos de comando na eletrocalha ou tubulação. Exceto quando o cabo de comando tiver isolamento adequado para tal fim.

Quando os cabos de comando não possuem a isolação adequada, coloque-os em eletrocalhas separadas e com no mínimo 500 mm de distância.

Quando for necessário cruzar os cabos de comando com os cabos de potência, cruzar perpendicularmente (90º graus).

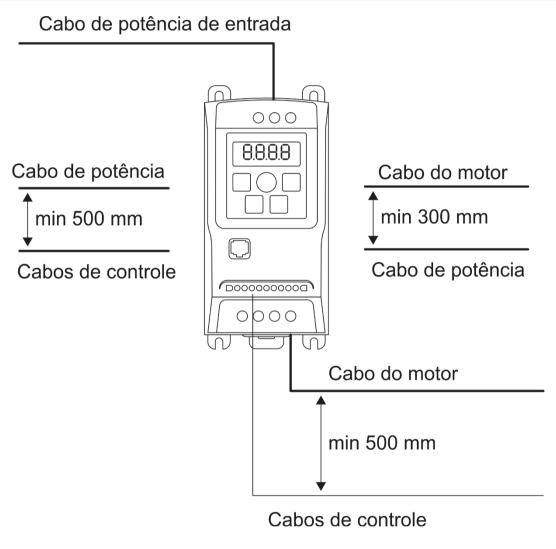


Figura 3.3.3 – Boas práticas para passagem dos cabos

- Quando os cabos de potência da alimentação do inversor e/ou de outro equipamento forem instalados em leitos paralelos ao leito do cabo do motor, garanta uma distância de 300 mm entre os mesmos como na Figura 3.3.3
- A Figura 3.3.4 representa uma instalação cumprindo as boas práticas referente à compatibilidade eletromagnética.

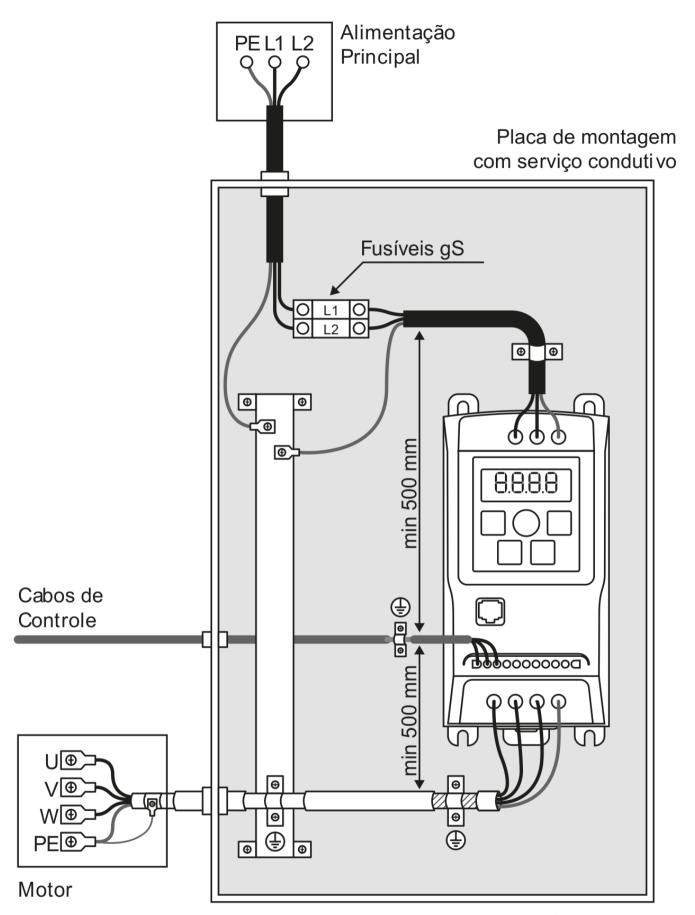


Figura 3.3.4 – Boas práticas para instalação em painel elétrico

PERIGO!

O cabeamento deve ser dimensionado de acordo com as normas técnicas vigentes. A utilização de cabos incorretamente dimensionados e/ou de má qualidade pode causar morte ou ferimento ou dano irreversível ao equipamento.

Recomenda-se que seja utilizado o modelo de cabo multipolar específico para a utilização em inversores de frequência. O cabo recomendado possui três condutores simétricos para as fases, três condutores simétricos para aterramento (PE) e a blindagem em cobre (SCu) ou em alumínio. O mesmo cabo multipolar pode ser utilizado para a alimentação do driver. A Tabela abaixo apresenta as opções recomendadas para cada situação em termos de desempenho EMC.

Figura	Descrição	Blindagem	Desempenho EMC				
PE W V PE SCU	Cabo multipolar 3 + 3 vias simétricas.	Cobre ou alumínio.	Excelente				
PES SCu	Cabo multipolar 3 vias simétricas. Quando a blindagem for atuar como terra de proteção deve possuir ao menos 50% da condutibilidade dos condutores fase. Se necessário, adicionar um condutor para aterramento externo ao cabo. Ou utilize a blindagem somente como proteção EMC.	Cobre ou alumínio.	Razoável				
L3 L2 L1 PE SCu	Quando os condutores forem menores que 10 mm², pode-se utilizar como uma alternativa, este modelo de cabo.	Cobre ou alumínio.	Aceitável				
Legenda							
U, V, W – Condutores fase.	PE – Condutor de aterramento.	SCu – Blinda	gem de cobre.				

Figura 3.3.5 – Opções de cabos recomendados

Em casos onde os condutores possuem até 10mm², pode-se optar pelo cabo multipolar. Caso seja utilizado cabo sem blindagem, pode-se passar o cabo pelo

eletroduto metálico e devidamente aterrado com intuito de diminuir a emissão eletromagnéticas gerada.

Cabos sem blindagem só podem ser utilizados quando não for necessário alguma norma ou diretiva referente à compatibilidade eletromagnética

Seleção do cabeamento de sinal digital e sinal analógico

O cabeamento deve ser dimensionado de acordo com as normas técnicas vigentes e o tipo de sinal que será transmitido, sendo considerada a atenuação. Recomenda-se que seja utilizado cabo com blindagem cobreada em locais com tendência a interferência eletromagnética por baixa frequência, e para locais onde a maior fonte de interferência eletromagnética seja proveniente de sinais de alta frequência (RFI), deve-se utilizar cabos blindados com folha de poliéster metalizado.

Identificação dos bornes de potência

Na Figura 3.3.6 são apresentados os bornes de alimentação do inversor L2 e L3 onde deve ser alimentado com 220 VCA. O borne para aterramento do equipamento deve ser interligado ao barramento de equipotencialização.

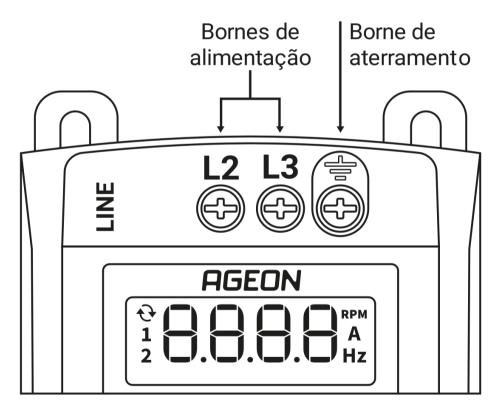


Figura 3.3.6 – Alimentação do inversor

Na Figura 3.3.7 são mostrados os bornes de alimentação do motor e o borne para aterramento da carcaça. A saída do inversor é 220 VCA trifásico.

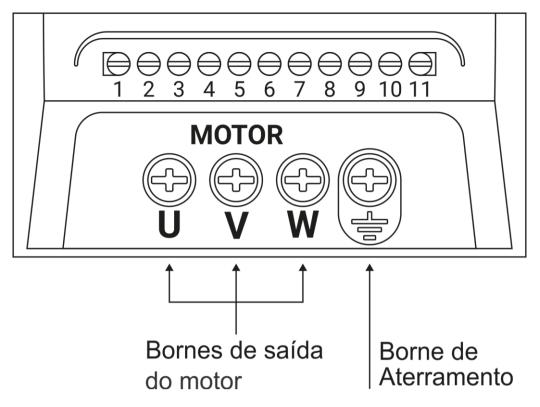


Figura 3.3.7 – Bornes de saída e aterramento

Identificação dos bornes de comando

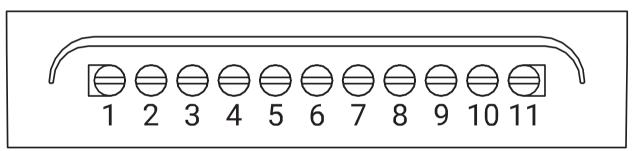


Figura 3.3.8 – bornes de comando

- 1 Fonte de alimentação de 10 volts, com capacidade de 25 mA.
- 2 Entrada analógica de tensão ou corrente.
- 3 GND
- 4 Entrada digital 1 (DI1)
- 5 Entrada digital 2 (DI2)
- 6 Entrada digital 3 (DI3)

- 7 Entrada digital 4 ou saída analógica em corrente
- 8 Saída analógica de tensão ou corrente.
- 9 Contato normalmente aberto do relé
- 10 Comum do relé.
- 11 Contato normalmente fechado do relé.

Conexão dos bornes de comando

Conforme a Figura 3.3.8 onde os bornes de comando são apresentados, a seguir são mostradas as configurações nas quais os bornes podem ser utilizados.

Entradas digitais

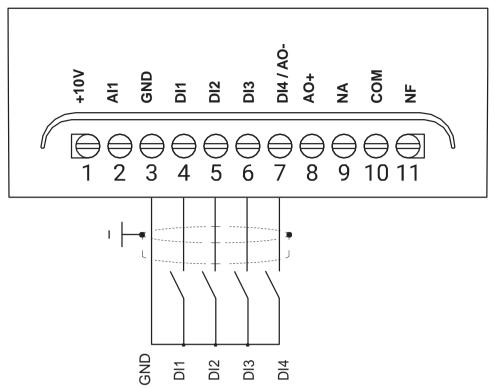


Figura 3.3.9 – Exemplo De ligação das entradas digitais

Saída a relé

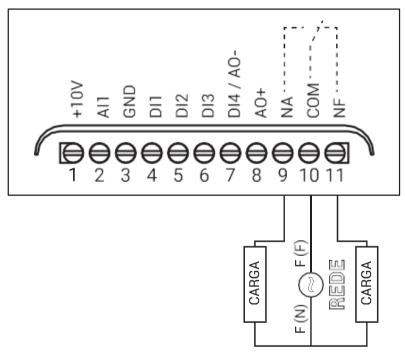


Figura 2.3.10 – Saída a relé

Entrada analógica com potenciômetro

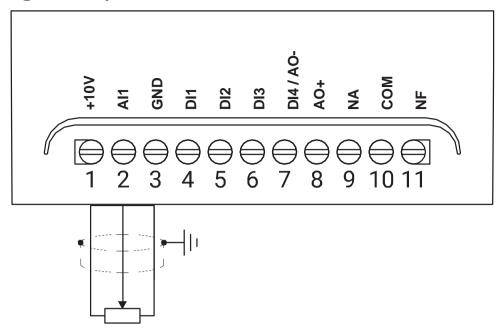


Figura 3.3.11 – Esquema de ligação do potenciômetro

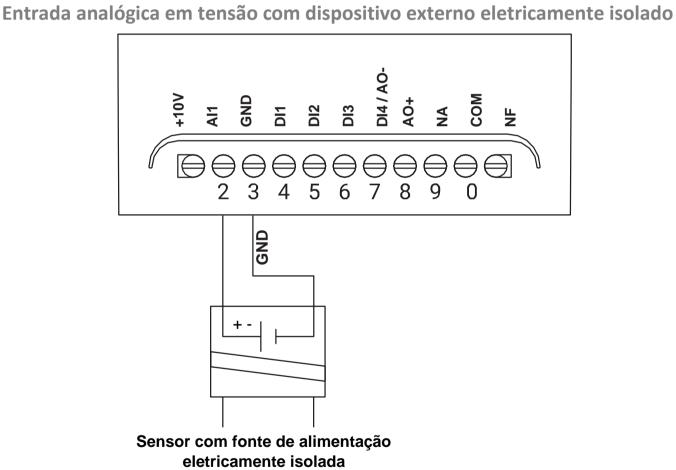


Figura 3.3.12 – Esquema de ligação de dispositivo externo via sinal de tensão

Entrada analógica com ligação em tensão com dispositivo externo não isolado

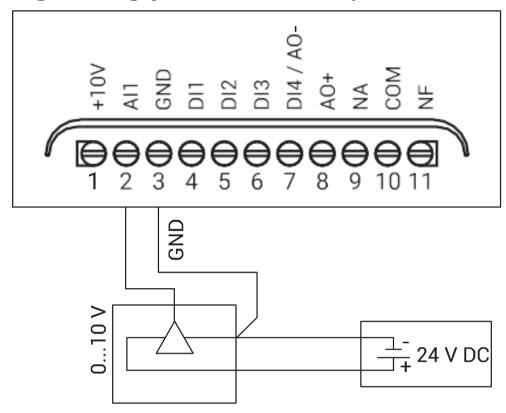


Figura 3.3.13 – Esquema de ligação de dispositivo externo via sinal de tensão Saída analógica em tensão

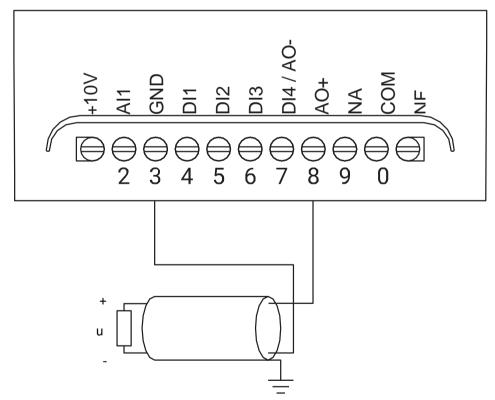


Figura 3.3.14 – Esquema de ligação da saída analógica em tensão

Entrada analógica com ligação em corrente com dispositivo externo isolado

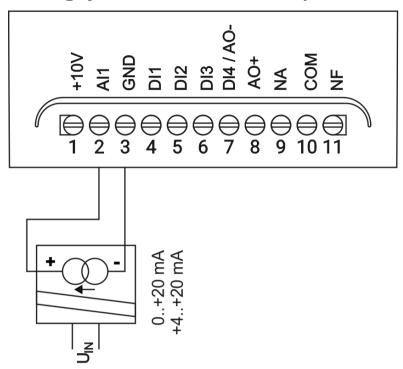


Figura 3.3.15 – Esquema de ligação de dispositivo externo via sinal de corrente Entrada analógica com ligação em corrente com dispositivo externo não isolado

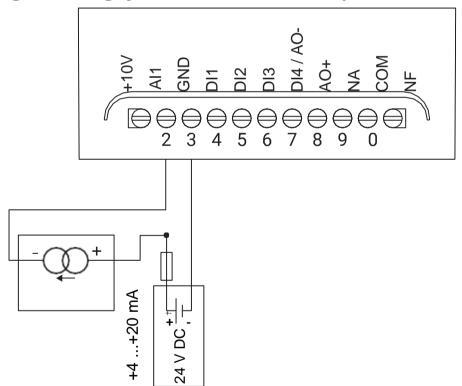


Figura 3.3.16 – Esquema de ligação de dispositivo externo via sinal de corrente

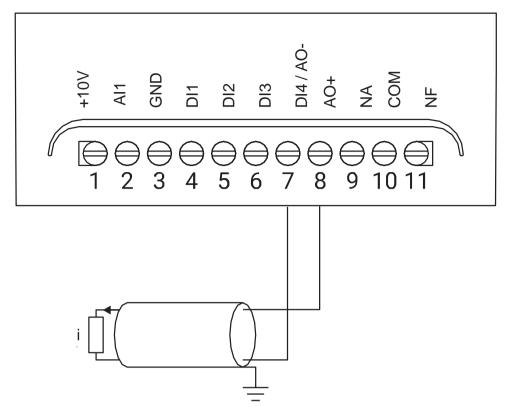


Figura 3.3.17 – Esquema de ligação da saída analógica em corrente

3.4 Proteções

ATENÇÃO!

O dimensionamento incorreto dos fusíveis de proteção e/ou da bitola do cabeamento pode causar dano irreversível ao equipamento bem como a instalação elétrica. Dimensione os fusíveis corretamente conforme a tabela a seguir e de acordo com as normas vigentes.

Para fazer a proteção de saída do inversor, deve-se utilizar fusível do tipo ultrarrápido gR ou gS específico para proteção de semicondutores com a especificação de corrente conforme a tabela a seguir.

Inversor	Fusível [A]	Fiação potência [mm²]	Fiação de aterramento [m²]
XF2-05	10	1,5	2,5
XF2-10	15	1,5	4
XF2-20	20	2,5	4
XF2-50	32	2,5	6

Tabela 3.4.1 – Dimensionamento dos fusíveis de proteção

Capítulo 4 - Descrição dos parâmetros

O inversor pode ser programado pela IHM ou via comunicação Modbus. Para programar o inversor através da IHM, utilize as teclas da seguinte forma:

- Entre na tela de parâmetros pressionando a tecla SET continuamente por 5 s;
- Navegue pelos parâmetros utilizando as teclas "+" e "-";
- Quando o parâmetro desejado aparecer no visor, pressione a tecla SET novamente para entrar no parâmetro, o valor do parâmetro aparecerá piscando no visor;
- Ajuste o parâmetro utilizado as teclas "+" e "-";
- Para confirmar o valor programado e sair do parâmetro, pressione a tecla SET novamente;
- Para sair da tela de parâmetros pressione a tecla SET continuamente por 5 s ou não pressione nenhuma tecla por 10 s;

Para programar o inversor via comunicação Modbus, conecte o mestre da rede na porta de comunicação e acesse os parâmetros desejados através dos respectivos registradores indicados na Tabela 1.1.1 Para mais detalhes sobre a comunicação com Modbus, consulte o "Capítulo 5 — Comunicação Modbus RTU".

ATENÇÃO!

A parametrização do inversor deve ser feita por profissional qualificado. Garanta que o motor a ser acionado e todos os eventuais periféricos a serem utilizados estão de acordo com as normas vigentes e em bom estado de funcionamento antes do comissionamento da programação.

4.1 Parâmetros de visualização

P001 – Visualização da Frequência de Saída

Indica a frequência de saída para o motor, em Hertz (Hz).

P002 – Visualização da tensão no link CC

Indica a tensão no barramento CC em Volts.

P003 – Visualização da corrente de saída do inversor

Indica a corrente de saída no inversor em Amperes.

P004 - Visualização da tensão de saída do inversor

Indica a tensão em Volts de saída que está sendo aplicada ao motor.

P005 – Visualização da temperatura no módulo IGBT

Indica a temperatura no módulo IGBT. Caso a temperatura seja superior ao limite de proteção, o erro E004 será gerado.

P006 – Visualização dos últimos 5 erros ocorridos no inversor

Este parâmetro indica os últimos 5 erros ocorridos no inversor, podendo ser:

- E002 = Erro de sobretensão na entrada.
- F003 = Frro de subtensão na entrada.
- E004 = Erro de sobretemperatura.
- E005 = Erro de sobrecarga conforme o parâmetro P051.
- E006 = Erro de sobrecorrente por hardware.
- E007 = Erro de hardware
- F008 = Frro de falta de fase na saída.
- E009 = Erro de comunicação com a IHM Remota ou Modbus. Consulte a seção "2.4 Solução de falhas".

P009 – Visualização da versão do software do inversor

Indica a versão do software presente no inversor

4.2 Parâmetros de escrita

P007 – Parâmetro para bloqueio de alteração

É utilizado para bloquear ou desbloquear a alteração dos parâmetros do inversor.

Ao acessar o parâmetro, ele pode estar com os seguintes valores:

- 0 = Parâmetros desbloqueados, o usuário poderá alterar os parâmetros do inversor.
- 1 = Parâmetros bloqueados, o usuário não poderá alterar os parâmetros do inversor.

Insira o valor 28 para bloquear ou desbloquear as alterações no inversor. Para confirmar a alteração, saia da tela de configuração de parâmetros.

P008 – Parâmetro para reset de fábrica

Inserindo 103 reseta todos os parâmetros para o padrão de fábrica.

P010 – Controle de parada do motor

Define se a parada do motor será por rampa ou parada livre, onde:

- 0 = Parada por rampa conforme o tempo programado no parâmetro P012;
- 1 = Parada livre, ou seja, o motor irá parar conforme a inércia da carga.

ATENÇÃO!

Rampas de aceleração e/ou desaceleração muito rápidas podem causar sobrecarga no inversor. Garanta que os tempos de aceleração/desaceleração são adequados para a potência do motor e carga.

Define o tempo, em segundos, de aceleração do motor até a frequência nominal definida no parâmetro P602. Esta rampa também sempre será aplicada quando houver um aumento na referência de frequência. A aceleração possui perfil linear (rampa) conforme a Figura 4.2.1. Os tempos de aceleração entre mudanças de referência serão sempre proporcionais ao tempo definido em P011.

Exemplo: se a frequência nominal é 60 Hz (P602 = 60) e a rampa de aceleração é de 10 s (P011 = 10) e que deseja-se acelerar de 0 Hz a 30 Hz, o tempo total de aceleração será 5 s.

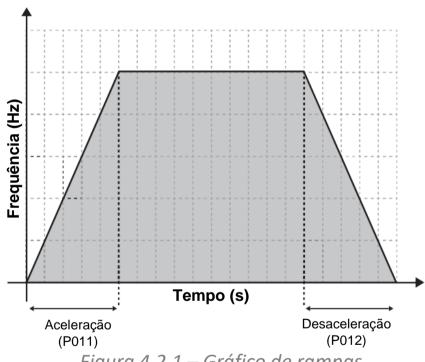


Figura 4.2.1 – Gráfico de rampas

P012 – Rampa de desaceleração

Define o tempo, em segundos, de desaceleração do motor até 0 Hz. Esta rampa também sempre será aplicada quando houver uma diminuição na referência de frequência. A desaceleração possui perfil linear (como na Figura 4.2.1.).

P013 – 2º Rampa de aceleração

Caso o inversor esteja em modo de alternância de rampas via entradas digitais (configuráveis em P304), neste parâmetro o usuário poderá configurar a 2° rampa de aceleração, seguindo a mesma lógica da 1° rampa de aceleração (P011).

P014 – 2º Rampa de desaceleração

Caso o inversor esteja em modo de alternância de rampas via entradas digitais (configuráveis em P304), neste parâmetro o usuário poderá configurar a 2° rampa de desaceleração, seguindo a mesma lógica da 1° rampa de desaceleração (P012).

P021 – Backup da referência de frequência

Define qual referência de frequência será seguida no momento da ativação. Onde:

- 0 = Backup desabilitado: quando a saída for ativada, o motor irá acelerar seguindo a rampa de aceleração definida em P011 até a frequência mínima programada em P023;
- 1 = Backup habilitado: quando a saída for ativada, o motor irá acelerar seguindo a rampa de aceleração definida em P011 até a frequência aplicada ao motor antes da última desativação da saída;
- 2 = Quando a saída for ativada, o motor irá acelerar seguindo a rampa de aceleração definida em P011 até a frequência definida em P022.

P022 - Frequência inicial

Caso P021 = 2, após ativação, o motor irá acelerar seguindo a rampa de aceleração definida em P011 até a frequência definida neste parâmetro.

P023 – Frequência mínima

Define um limite mínimo para referência de frequência.

Exemplo: Caso P023 = 45 e P024 = 65, o usuário não poderá ajustar uma frequência de saída menor que 45 Hz e maior que 65 Hz.

P024 – Frequência máxima

Define um limite máximo para referência de frequência.

Exemplo: Caso P023 = 45 e P024 = 65, o usuário não poderá ajustar uma frequência de saída menor que 45 Hz e maior que 65 Hz.

P028 – Seleção de unidade padrão no display

O display permite apresentar os valores em Hertz, Ampere ou RPM.

Neste parâmetro o usuário define qual destas unidades será exibido assim que o inversor inicializar.

- 0 = O inversor ao ser acionado irá mostrar no display a frequência do motor. (Hz)
- 1 = O inversor ao ser acionado irá mostrar no display a corrente do motor em ampere.(A)

2 = O inversor ao ser acionado irá mostrar no display a velocidade do motor em rotações por minuto. (RPM)

Por exemplo, se for posto o valor 2, sempre que o inversor for alimentado, será exibido o valor em RPM. Caso seja alterado manualmente para Ampere através da tecla SET, ficará desta forma até o usuário alterar novamente ou caso o equipamento seja desligado, ao religar voltará em RPM.

P041 – Compensação de torque

Caso a carga no motor a ser acionado seja de alta inércia, o usuário poderá aplicar, através deste parâmetro, um aumento da tensão de saída, chamado de compensação de torque. Este parâmetro é especialmente útil para acionamento de motores com cargas de alta inércia em baixas velocidades.

Exemplo: Caso seja configurado para 15, a tensão aplicada ao motor será 15 % maior.

Observação: Aumente o valor deste parâmetro somente se necessário, pois o aumento de tensão no motor é diretamente proporcional ao aumento de temperatura do mesmo.

P043 - Frequência de chaveamento

Possibilita configurar a frequência de chaveamento dos IGBTs conforme descritos na Tabela abaixo.

P43	Motor	Temperatura IGBT's		
5 kHz				
10 kHz	RUÍDO	AQUECIMENTO		
15 kHz				

Tabela 4.2.1

- Quanto maior a frequência de chaveamento, maior será o aquecimento dos IGBT's/dissipador e menor será o ruído sonoro emitido pelo motor.
- Quanto menor a frequência de chaveamento, menor será o aquecimento dos IGBT's/dissipador e maior será o ruído sonoro emitido pelo motor.

P051 – Corrente de sobrecarga

Define a corrente de sobrecarga do motor, levando em consideração a corrente nominal e fator de serviço indicado pelo fabricante do motor. Caso o valor de corrente deste parâmetro seja alcançado ou ultrapassado, o inversor irá acusar o erro E005.

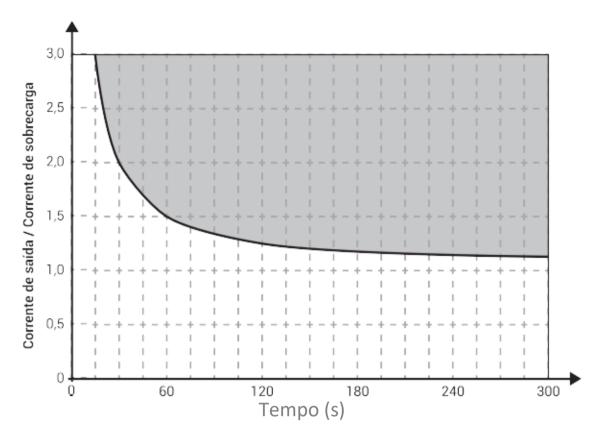


Figura 4.2.2 – Gráfico de corrente de sobrecarga

A atuação da proteção contra sobrecarga do motor segue a curva apresentada na Figura 4.2.2 e gera o erro E005. Quanto maior o valor da razão entre a corrente de saída e o valor de P051, menor será o tempo de atuação da proteção.

Exemplo: suponha que o motor a ser acionado possui corrente nominal em 220 V de 2.8 A e fator de serviço de 1.15. Dessa forma um valor seguro para P051 seria 3.2 A (2.8 x 1.15). Agora suponha que em determinado ponto de operação a carga acionada pelo motor resulta em uma corrente de 5 A. De acordo com a curva de sobrecarga, se a corrente se manter em 5 A, em aproximadamente 60 s, a saída do inversor será desabilitada gerando o erro E005, protegendo o motor.

Observação: A corrente nominal costuma ser expressada na placa do motor como "Inom" ou "In". Já o fator de serviço na maioria das vezes é expressado como "Fs".

Este parâmetro pode ser desativado, onde, neste caso o motor não teria mais proteção de sobrecorrente. Contudo o inversor continua se protegendo contra curto-circuito por hardware (E006) e por sobretemperatura (E004).

P052 – Controle de corrente máxima

Define a corrente máxima na qual o inversor irá automaticamente diminuir a rotação do motor de modo que a corrente de saída não ultrapasse o valor programado.

Exemplo: suponha que a rotação nominal do motor acionado se dá em 60 Hz e a carga nominal esperada resulta em uma corrente de 3 A. Dessa forma configurando P052 em 3 A, se houver um aumento da carga no motor, o inversor automaticamente irá variar a frequência de saída de modo que a corrente seja sempre inferior a 3 A.

- Observação¹: este parâmetro pode ser desabilitado inserindo o valor "oFF".
- Observação²: em alguns casos pode haver um comportamento oscilatório da rotação do motor devido ao dinamismo da carga e ao tipo de controle aplicado.

P053 – Auto reset

Define o tempo (em segundos), após o erro, em que o inversor irá reiniciar automaticamente. O inversor retorna para o estado rdy após o tempo determinado neste parâmetro, se a condição de erro não persistir.

P054 – Tensão mínima no link CC

Define a tensão mínima do barramento CC que o inversor irá gerar o erro E003. Exemplo: Caso P54 = 190, se tensão no barramento CC for menor que o programado em P54 (190) o motor é desacionado e o inversor acusa E003.

P100 – Ganho na entrada analógica

Define o ganho da entrada analógica de acordo com a Equação 1:

$$AI' = \frac{AI \cdot G}{100}$$
 Equação 1

Em que:

- Al' é o valor interno que efetivamente é utilizado pelo inversor;
- Al é o valor externo, ou seja, o valor que de fato é lido na entrada analógica;
- G é o valor de P100.

Exemplo: Caso o ganho seja de 50% (P100 = 50.0), P101 = 0 e a amplitude do sinal na entrada for 5,0 V (AI = 5,0 V) a tensão final para referência de frequência será 2,5 V (AI' = 2,5 V).

P101 – Tipo de entrada analógica

Define o tipo de entrada analógica para gerar o valor de referência para a rotação do motor, sendo que:

0 = Tensão de 0 a 10 V;

1 = Corrente de 0 a 20 mA;

2 = Corrente de 4 a 20 mA.

P102 - Seleção da entrada digital 4 ou saída analógica em corrente (A0-)

A entrada digital 4 (DI4), é compartilhada com a saída analógica em corrente, sendo assim o usuário deve definir seu funcionamento, sendo:

Caso P102 = 0:

Pino 7 = Entrada digital (DI4);

Pino 8 = Saída analógica em tensão com escala de 0 a 10 Volts (A0+).

Caso P102 = 1:

Pino 7 = Terminal negativo da entrada analógica (A0-);

Pino 8 = Saída analógica em corrente com escala de 0 a 20 mA (A0+).

Caso P102 = 2:

Pino 7 = Terminal negativo da entrada analógica (A0-);

Pino 8 = Saída analógica em corrente com escala de 4 a 20 mA (A0+).

Observação: se P102 != 0 não é possível utilizar a referência de frequência por potenciômetro digital (P301 = 2) e quatro velocidades do multispeed (P301 = 3). Ver parâmetro P301.

P103 – Tipo de saída analógica

Grandeza que o inversor irá tomar como referência para gerar a saída analógica, sendo que:

0 = oFF, saída analógica desabilitada;

1 = Escala conforme a frequência do motor (De 0 Hz até o valor programado em P024);

2 = Escala conforme a corrente de saída do motor.

P104 – Função da saída a relé

Define o comportamento do relé, sendo que o mesmo irá acionar:

- 0 = Quando a frequência de saída for igual a frequência de referência (Fsaida = Fref);
- 1 = Quando a frequência de referência for maior que o valor programado no parâmetro P105 (Fref > P105);
- 2 = Quando a frequência de saída for maior que a frequência programada no parâmetro P105 (Fsaida > P105);
- 3 = Quando a corrente de saída for maior que o valor programado em P106 (Isaida > P106);
- 4 = Em modo run, significa que o relé irá acionar quando o motor for acionado;
- 5 = Durante a rampa de desaceleração do motor;
- 6 = Relé permanecerá acionado enquanto o inversor não acusar nenhum erro.

P105 – Frequência de saída para acionar o relé

Caso P104 = 1 ou 2, define a frequência que irá acionar a saída a relé.

P106 – Corrente de saída para acionar o relé

Caso P104 = 3, define a corrente de saída aplicada ao motor que irá acionar a saída a

relé.

P201 - Multispeed - velocidade 1

Referência de frequência 1 do controle multispeed. Ver parâmetro P301. Sem efeito caso P102 = 1 ou 2.

P202 - Multispeed - velocidade 2

Referência de frequência 2 do controle multispeed. Ver parâmetro P301. Sem efeito caso P102 = 1 ou 2.

P203 – Multispeed - velocidade 3

Referência de frequência 3 do controle multispeed. Ver parâmetro P301. Sem efeito caso P102 = 1 ou 2.

P204 - Multispeed - velocidade 4

Referência de frequência 4 do controle multispeed. Ver parâmetro P301. Sem efeito caso P102 = 1 ou 2.

P205 - Multispeed - velocidade 5

Referência de frequência 5 do controle multispeed. Ver parâmetro P301. Sem efeito caso P102 = 1 ou 2.

P206 - Multispeed - velocidade 6

Referência de frequência 6 do controle multispeed. Ver parâmetro P301. Sem efeito caso P102 = 1 ou 2.

P207 - Multispeed - velocidade 7

Referência de frequência 7 do controle multispeed. Ver parâmetro P301. Sem efeito caso P102 = 1 ou 2.

P208 - Multispeed - velocidade 8

Referência de frequência 8 do controle multispeed. Ver parâmetro P301. Sem efeito caso P102 = 1 ou 2.

P301 – Seleção da Referência de Frequência

Valor P301	Tipo de referência
0	Entrada analógica: ver parâmetros P100 e P101. A referência de frequência será proporcional ao valor de leitura da entrada analógica dentro dos limites P023 e P024.
1	Teclas IHM: a referência de frequência é ajustada através das teclas da IHM. Em operação, para incrementar a frequência de referência, pressione a tecla "+" continuamente. Para decrementar, pressione a tecla "-" continuamente.

	Um único	Um único toque nas teclas incrementa/ decrementa a frequência em 0,1 Hz.						
2	de DI3 for mesma for decrement frequênci o parâme	Potenciômetro eletrônico (entradas digitais DI3 e DI4): enquanto o estado de DI3 for alto, a frequência de saída é incrementada continuamente. Da mesma forma, enquanto o estado de DI4 for alto a frequência de saída é decrementada continuamente. Se as entradas estiverem em estado baixo a frequência não é alterada. Para configuração das entradas digitais consulte o parâmetro P305.						
	*Sem efe	to caso P10	02 = 1 ou 2					
	para valo	ores prede 12 (caso P3 os P201 a P	terminados 04 = 3), D	de acord 13 e DI4. E	nite que a velocidade seja varia do com os estados das entra stes valores são programados da velocidade se dá de acordo c	das nos		
		DI2	DI3	DI4	VALOR DE REFERENCIA			
		0	0	0	Valor definido em P201			
3		0	0	1	Valor definido em P202			
		0	1	0	Valor definido em P203			
		0	1	1	Valor definido em P204			
	m	1	0	0	Valor definido em P205			
	304 =	1	0	1	Valor definido em P206			
	P3(1	1	0	Valor definido em P207			
	Se							
	Válido se	P102 = 0						
4		o valor d Ver Capítul		cia de fre	quência provém da comunica	ção		

Tabela 4.2.2 – Seleção da referência de frequência

P302 – Seleção de comandos

Valor P302	Tipo de comando
0	Teclas IHM: todos os comandos são realizados somente via teclas da IHM.
1	Comando via entrada digital (ON/OFF): Se DI1 alto, ON, se baixo, OFF. Comportamento de DI2 definido em P304.
2	Comando via entrada digital (Avanço/Retorno): Se DI1 alto, avança (motor acionado no sentido normal), se DI2 alto, retorno (sentido reverso). *Se P304 =2, utiliza segunda rampa para função.
3	Modbus: comandos realizados através da comunicação Modbus. Ver capítulo 5.

Tabela 4.2.3 – Seleção de comandos

P303 - Sentido de giro

Define o sentido de giro do motor de acordo com as seguintes opções:

- 0 Sentido normal: Permanecera sempre em sentido normal, independentemente de qualquer comando.
- 1 Sentido reverso: Permanecera em sentido reverso. Independentemente de qualquer comando.
- 2 Sentido definido pelos comandos: Depende do comando de sentido de giro (ver parâmetros P302 e P304). Quando essa opção é definida o inversor parte o motor em sentido normal por padrão.

P304 – Função da entrada digital DI2

Valor P304	Função de DI2*
0	Se P302 = 1: sentido de giro normal; se alto, sentido reverso.
1	Se P302 = 1: segunda rampa – Se o estado de DI2 é baixo, rampa por P011 e P012; se alto, rampa por P013 e P014.
2	Se P302 = 2: Avanço na primeira rampa, retorno na segunda rampa – Quando estado de DI1 for baixo e o estado de DI2 for alto, rampa por P013 e P014 e sentido de giro oposto.
3	Se P302 = 1: Multispeed – DI2 faz parte da lógica de seleção de velocidade da referência de frequência multispeed. Definindo se será utilizado 4 ou 8 velocidades na multispeed. Ver parâmetro P301.
4	Se P302 = 1: habilita geral – Se o estado de DI2 é baixo, o inversor é desabilitado e exibe a mensagem STOP; se alto, inversor habilitado.

Tabela 4.2.4 – Função da DI2

^{*} Para a configuração do nível lógico das entradas digitais consulte o parâmetro P305.

P305 – Seleção do nível lógico das entradas digitais (nA/nF)

Define o tipo das entradas digitais como normalmente aberta (nA) ou normalmente fechada (nF).

0 = Normalmente aberta (nA): dessa forma em estado 0 ou baixo a entrada digital está flutuando. Em estado 1 ou alto a entrada digital está conectada no GND.

1 = Normalmente fechada (nF): dessa forma em estado 0 ou baixo a entrada digital está conectada ao GND. Em estado 1 ou alto a entrada está flutuando.

P401 – Porcentagem da corrente nominal na frenagem CC

Define o valor de corrente CC que será aplicada ao motor durante a frenagem CC. Este valor é expresso em uma porcentagem da corrente nominal do motor, definida no parâmetro P602, de acordo com a Equação:

$$I_{\it CC} = rac{K \, . I_{\it NOM}}{100}$$
 Equação 2

Onde:

- *Icc* é a corrente aplicada ao motor durante a frenagem CC;
- *K* é o valor de P401;
- ullet I_{NOM} é o valor de corrente nominal do motor a ser acionado no parâmetro P602.

Exemplo: se o motor a ser acionado possui uma corrente nominal de 6.5 A (P602 + 6.5) e a corrente da frenagem CC desejada é 15% da corrente nominal, ou seja, P401 = 15, então a corrente aplicada ao motor durante a frenagem CC será de 975 mA.

P402 – Duração da frenagem CC na partida

Define o tempo em que a corrente CC definida no parâmetro P401 será aplicada ao motor na partida. No momento em que a saída do inversor é habilitada, a corrente CC é aplicada ao motor pelo tempo definido neste parâmetro e ao fim deste tempo o motor acelera para frequência de referência de acordo com as configurações.

P403 – Duração da frenagem CC na parada

Define o tempo em que a corrente CC definida no parâmetro P401 será aplicada ao motor na parada. Após a desabilitação da saída do inversor, o motor desacelera seguindo as configurações definidas e no momento em que atinge a frequência de frenagem (P404) a corrente CC é aplicada ao motor pelo tempo definido neste parâmetro.

P404 – Frequência de frenagem na parada

Define a frequência em que a frenagem CC é iniciada na parada. Após a desabilitação da saída do inversor, o motor desacelera seguindo as configurações definidas e no momento em que atinge a frequência de frenagem, a corrente CC definida em P401 é aplicada ao motor pelo tempo definido em P403.

P501 - Banda a ser evitada

Define uma banda de frequência a ser evitada na saída do inversor. Ver parâmetros P502, P503 e P504.

P502 – Frequência 1 a ser evitada

Define uma frequência a ser evitada, ou seja, o inversor não operará de maneira contínua na frequência definida neste parâmetro e em toda a faixa definida de acordo com o parâmetro P501 como mostrado na Figura 4.2.5

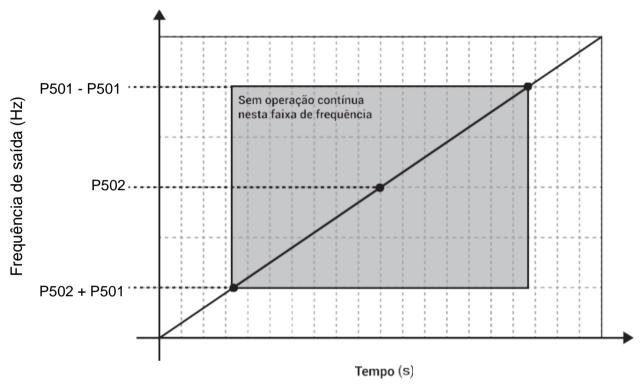


Figura 4.2.3 – Função da DI2

Exemplo: suponha que a frequência a ser evitada é 15 Hz (P502 = 15) e a banda a ser evitada é de 5 Hz (P501 = 5), assim se a referência de frequência estiver entre 10 Hz e 20 Hz (intervalo P502 - P501 a P502 + P501), dependendo da condição do comando (acelerar ou desacelerar para nova referência) toda essa faixa será evitada, ou seja, o inversor irá de 10 Hz para 20 Hz considerando a rampa de aceleração, bem como de 20 Hz para 10 Hz considerando a rampa de desaceleração.

• Observação: se o resultado de P502 — P501 for inferior a P023, o valor de P023 prevalece e se o resultado P501+ P501 for superior a P024, o valor de P024 prevalece.

P503 – Frequência 2 a ser evitada

Define uma segunda frequência a ser evitada. Ver Figura 4.2.3, e o exemplo exposto no parâmetro P502.

Observação: se o resultado de P503 - P501 for inferior a P023, o valor de P023 prevalece e se o resultado de P503 + P501 for superior a P024, o valor de P024 prevalece.

P504 – Frequência 3 a ser evitada

Define uma frequência a ser evitada. Ver Figura 4.2.3, e o exemplo exposto no parâmetro P502.

Observação: se o resultado de P504 - P501 for inferior a P023, o valor de P023 prevalece e se o resultado de P504 + P501 for superior a P024, o valor de P024 prevalece.

P601 – Tipo de controle

Define o modo como a velocidade de rotação do motor será controlada. Tem-se as opções:

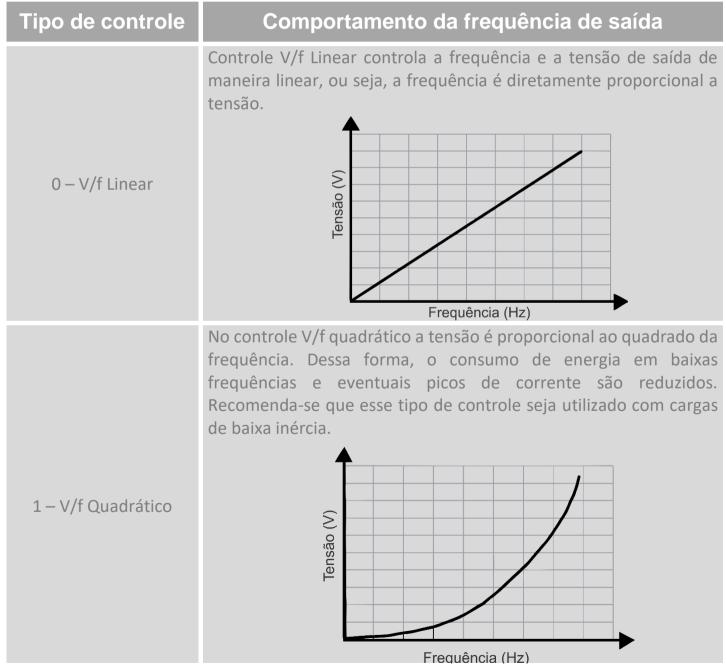


Tabela 4.2.5 – Tipo de controle

P602 – Frequência nominal do motor

Este parâmetro deve ser ajustado de acordo com as informações na placa de identificação do motor.

ATENÇÃO!

É muito importante que este parâmetro seja ajustado corretamente pois é através deste valor que o método de controle irá definir as curvas V/f. Se ajustado incorretamente pode causar dano permanente ao motor

P603 – Rotação nominal do motor

Este parâmetro deve ser ajustado de acordo com as informações na placa de identificação do motor.

P604 – Corrente nominal do motor

Este parâmetro deve ser ajustado de acordo com as informações na placa de identificação do motor.

ATENÇÃO!

É muito importante que este parâmetro seja ajustado corretamente pois o valor de P602 é utilizado no cálculo da corrente CC aplicada na frenagem CC (ver parâmetro P401). Valores incorretos podem resultar na aplicação de uma corrente CC muito alta e danificar o motor.

P701 – Endereço do inversor (Modbus)

Define o endereço do inversor na rede Modbus. Todos os dispositivos da rede devem possuir endereços únicos. Não é recomendado alterar este parâmetro através da comunicação Modbus. Ver Capítulo 5.

P702 – Baudrate (Modbus)

Define o baudrate, ou taxa de transmissão da comunicação Modbus. O valor deste parâmetro deve ser igual ao do mestre da rede Modbus. Todos os dispositivos na rede devem se comunicar no mesmo baudrate. Para operação em ambientes agressivos eletromagneticamente recomenda-se o uso de taxas mais lentas para reduzir a probabilidade de erros de comunicação. No caso de ambientes menos agressivos e aplicações onde a demanda de comunicação é maior (maior taxa de leituras/escritas) uma taxa de transmissão maior pode ser utilizada. Ver Capítulo 5.

P703 – Paridade (Modbus)

Define o tipo de paridade utilizada no *framing* da comunicação Modbus. Tem-se as opções (ver Capítulo 5):

Valor de P703	Tipo de paridade
0	OFF: nenhuma paridade, ou <i>None</i> . Nesta configuração não há cálculo de paridade e cada campo da mensagem terá 2 bits de parada.
1	Par: Even. A quantidade de bits 1 é contada. Se a quantidade for ímpar, o bit de paridade será 1 para que a quantidade total de bits 1 na mensagem seja par; se a quantidade for par, o bit de paridade será 0.
2	Ímpar: <i>Odd.</i> A quantidade de bits 1 é encontrada. Se a quantidade for ímpar o bit de paridade será 0 para que a quantidade total de bits 1 na mensagem seja ímpar; se a quantidade for par, o bit de paridade será 1.

Tabela 3.3.20

P704 – Temporizador Watchdog (Modbus)

Define a quantidade de tempo do temporizador watchdog. Esse temporizador é um mecanismo de detecção de falha da comunicação Modbus. Se P301 = 4 e P302 = 3, e o valor deste parâmetro é diferente de OFF, o temporizador começa a contagem de tempo a partir da última mensagem válida recebida do mestre da comunicação Modbus. Se após o tempo definido em P704 nenhuma mensagem for recebida o erro E008 é gerado. Ver Capítulo 5.

Capítulo 5 - Comunicação Modbus RTU

5.1 Informações preliminares

A família de inversores AG Drive possui comunicação Modbus nativa, ou seja, não é necessário adquirir nenhum módulo à parte. O protocolo implementado é o Modbus RTU. A comunicação Modbus permite que o dispositivo seja controlado remotamente e que seja incluído em uma rede de comunicação. A seguir são descritos os princípios básicos de funcionamento. Nesta seção, números decimais são exibidos sem sufixo, números hexadecimais são exibidos com sufixo 'h' e bits são exibidos com sufixo 'b'.

Hardware e conexão

O protocolo da camada física utilizado é o padrão EIA/TIA-485. Na família AG Drive a RS-485 é implementada no modo half-duplex, onde o envio e o recebimento das mensagens é feita pelo mesmo barramento. O meio físico utilizado é o cabo TIA/EIA-568-B.1-2001 Category 6 (CAT6) ou Category 5/5e (CAT5) em retro compatibilidade. A conexão no inversor utiliza conector RJ-45.

NOTA

Os seguintes pontos devem ser observados:

- Utilize sempre cabos adequados para o ambiente de operação, preferencialmente com blindagem de cobre;
- Atente-se para o distanciamento mínimo entre o cabeamento de sinal/comunicação e os cabos de potência.

A topologia recomendada é a *Daisy Chain* ou barramento com derivações, mantendo as derivações o mais curtas possível como apresentado na Figura 5.1.1 Uma forma de implementação é utilizando um adaptador Y com ligação de acordo com a Figura 5.1.2

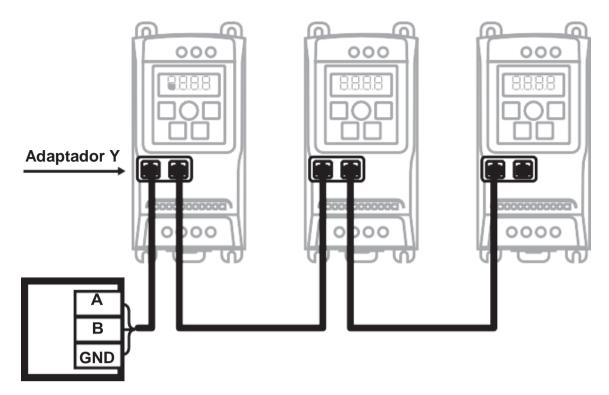


Figura 5.1.1 – Exemplo de ligação Daisy Chain

ATENÇÃO!

O uso de adaptadores de comunicação ou outros dispositivos similares deve ser testado e validado antes da operação. Utilize apenas dispositivos que estejam de acordo com as normas de segurança.

Para realizar a topologia *Daisy Chain* recomenda-se o uso de um adaptador Y, de modo a evitar emendas e conexões falhas entre os dispositivos que disponham de conector RJ-45. Existem diversos modelos deste adaptador, por isso, garanta que o adaptador selecionado possua a ligação conforme a Figura 5.1.1 e que as conexões estejam de acordo com a figura a seguir

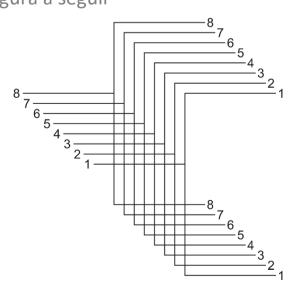
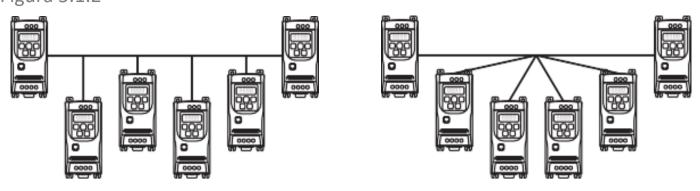
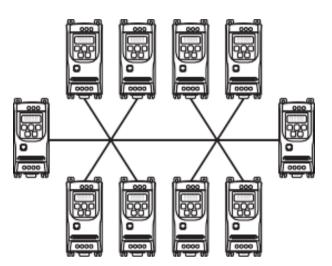
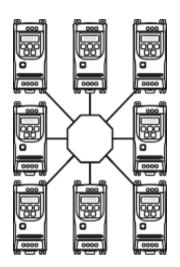




Figura 5.1.2 – Ligação do adaptador Y


Os demais métodos de ligação são toleráveis ou deve-se evitar, conforme Figura 5.1.2

Barramento com derivações (tolerável).

Estrela (inadmissível).

Barramento com estrela (inadmissível).

Anel (inadmissível).

Figura 5.1.3 – Métodos de ligação em rede

A tabela a seguir apresenta o esquema de ligação da porta RJ-45 do inversor.

Conectores	Pino do conector RJ-45	Função	Descrição
Fêmea	1 e 8	GND	Ground. Ponto comum do circuito. Não confundir com terra de proteção ou terrado painel.
1 8	2	+15 Vcc	Saída de tensão +15@400mA. Pode ser utilizada para alimentação de dispositivo periférico.
	3	В	Não utilizar.
	4	А	RS-485 A. Baixo para estado lógico 1, alto para 0.

Macho Superior	5	В	RS-485 B. Baixo para estado lógico 0, alto para 1.
1 8	6	А	Não utilizar.
1 8 Frontal	7	+5 Vcc	Saída de tensão +5V@100mA. Pode ser utilizada para alimentação de interface de comunicação.

Tabela 5.1.1 - Esquema de ligação da porta RJ-45

NOTA

O dispositivo master da rede deve conter resistor de terminação entre os pontos A e B.

Programação

Para utilizar a comunicação Modbus os seguintes parâmetros devem ser configurados:

- P301 Seleção Referência de Frequência: parametrizando em 4 a referência de frequência será somente via Modbus. Caso este parâmetro não seja configurado, na tentativa de comandar o inversor via Modbus, a mensagem de exceção 4 será enviada pelo inversor.
- P302 Seleção Comandos: parametrizando em 3 a seleção de comandos será somente via Modbus. Caso este parâmetro não seja configurado, na tentativa de comandar o inversor via Modbus, a mensagem de exceção 4 será enviada pelo inversor.
- P701 Endereço: endereço do inversor na rede Modbus, cada slave deve ter um endereço único.
- P702 Baudrate: taxa de transmissão em bps (bits por segundo). Todos os slaves da rede devem ser configurados com o mesmo baudrate do master. Em ambientes eletromagneticamente agressivos recomenda-se o uso de taxas de transmissão mais baixas, o mesmo vale no caso de longas distâncias entre dispositivos.

- P703 Paridade: selecione o tipo de paridade, todos os *slaves* devem estar configurados com a mesma paridade do *master*. Recomenda-se deixar em OFF.
- P704 Temporizador Watchdog: temporizador para verificação de erro de comunicação. Na ausência do recebimento de uma mensagem válida durante um período superior ao tempo programado para o temporizador watchdog, um erro de comunicação é gerado (E009). O temporizador inicia a partir do momento em que é setado e reinicia a cada mensagem válida recebida.

Consulte a lista de descrição de parâmetros para mais detalhes sobre os parâmetros.

5.2 O protocolo

O protocolo implementado é o Modbus RTU como descrito nos seguintes documentos:

- Modbus Application Protocol Specification v1.1b3
- Modicon Modbus Protocol Reference Guide

Framing

Cada caractere de uma mensagem do protocolo possui 11 bits sendo eles os seguintes:

Com paridade

Start bit	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	Bit 8	Paridade	Stop
Sem paridade										
Start bit	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	Bit 8	Stop	Stop

O bit 1 é o bit menos significativo (LSB) e o bit 8 o mais significativo (MSB).

Em um frame RTU tem-se, em geral, 6 campos sendo eles:

Start	Endereço	Função	Dados	CRC	End
3.4x tempo de caractere	8 bits	8 bits	n x 8 bits	16 bits	3.5x tempo de caractere

Na comunicação Modbus os dispositivos interpretam o início e fim da mensagem baseado em um tempo específico de silêncio no barramento. O tempo deve ser de 3.5 vezes o tempo de caractere (tempo de 11 bits). O tempo de caractere varia de acordo com o *baudrate* utilizado como na tabela a seguir:

Baudrate (b/s)	Tempo de bit (us)	Tempo de caractere (ms)	3.5x tempo de caractere (ms)
9600	104	1.2	4
19200	52	0.573	2
38400	26	0.286	1.75 (1)
115200	8.7	0.095	1.75 (0.33)

Tabela 5.2.1

Independentemente do valor do *baudrate* o tempo mínimo de 3.5 vezes o tempo de caractere é de 1.75 ms. Caso o tempo de silêncio no barramento entre mensagens seja inferior ou superior a 3.5 vezes o tempo de caractere, o dispositivo pode interpretar a informação como parte da mensagem anterior, resultando em um erro de comunicação podem ocorrer.

Da mesma forma, se o tempo entre bit for maior que 3.5 vezes o tempo de caractere, o dispositivo pode interpretar a informação vindoura como o início de uma nova mensagem, novamente gerando um erro de *checksum*.

O usuário deve configurar adequadamente o dispositivo master da rede de modo que os tempos mencionados sejam atendidos. Recomenda-se um timeout mínimo de 500 ms entre requisições.

O controle de paridade é configurável através do parâmetro P703. Existem três tipos possíveis de controle de paridade:

- Nenhuma paridade (*None*): neste caso a paridade da mensagem não é calculada e o *master* deve ser configurado para que a requisição possua 2 stop bits por caractere.
- Paridade par (Even): neste caso o bit de paridade do caractere será calculado da seguinte maneira: se o número total de bits 1 for par, o bit de paridade é 0, se for ímpar o bit de paridade é 1, tornando a quantidade total de bits do carácter par.
- Paridade ímpar (*Odd*): neste caso o bit de paridade do caractere será calculado da seguinte maneira: se o número total de bits 1 for par, o bit de paridade é 1 tornando a quantidade total de bits do carácter ímpar, se for ímpar o bit de paridade é 0. Caso exista erro de paridade na requisição, o AG Drive simplesmente não fornece nenhuma resposta.

O único de tipo de variável do protocolo *Modbus* RTU implementada no AG Drive é *holding register*.

As tarefas implementadas são a 03 e a 06, descritas a seguir:

- Leitura de holding registers, código 03x: leitura de um registrador ou grupo contíguo de registradores de 16 bits. O número máximo de registradores para leitura é 1.
- Escrita de holding register, código 06x: escrita de um único registrador de 16 bits.

No protocolo Modbus, os registradores de 16 bits são representados por um conjunto de 4 caracteres hexadecimais de 4 bits, e o valor dos registradores é transmitido em 2 campos de 8 bits. O primeiro campo possui os dois caracteres de 4 bits mais significativos (Hi) e o segundo campo os dois caracteres menos significativos (Lo). Por exemplo, o registrador 4100 guarda o estado do inversor. A conversão para hexadecimal resulta em 1004h. Dessa forma o primeiro campo do registrador será 10h e o segundo 04h.

A seguir tem-se exemplos de requisições e respostas das tarefas implementadas.

• Exemplo de leitura: verificar o tempo de rampa de aceleração do inversor, parâmetro P011 (valor de fábrica 10 s), através da leitura do registrador 10 (0Ah). Na tabela a seguir a requisição e a resposta são apresentadas.

Requisição (<i>Master</i>)	Resposta (Slave)		
Campo	Valor	Campo	Valor
Endereço do slave	01h	Endereço do slave	01h
Código da Função	03h	Código da Função	03h
Número do registrador inicial (Hi)	00h	Contagem de bytes	02h
Número de registrador inicial (Lo)	0Ah	Dado do registrador (Hi)	00h
Número de registradores (Hi)	00h	Dado do registrador (Lo)	0Ah
Número de registradores (Lo)	01h	CRC Lo	CRC Lo
CRC Lo	CRC Lo	CRC Hi	CRC Hi
CRC Hi	CRC Hi		

Tabela 5.2.2 - Requisição e resposta quando em leitura

• Exemplo de escrita: acionando o inversor via Modbus escrevendo o valor 1 no registrador 4101 (1005h). Na tabela a seguir a requisição e a resposta são apresentadas.

Requisição (<i>Master</i>)		Resposta (<i>Slave</i>)		
Campo	Valor	Campo	Valor	
Endereço do slave	01h	Endereço do slave	01h	
Código da Função	06h	Código da Função	06h	
Número do registrador inicial (Hi)	10h	Contagem de bytes	10h	
Número de registrador inicial (Lo)	05h	Dado do registrador (Hi)	05h	
Valor (Hi)	00h	Valor (Hi)	00h	
Valor (Lo)	01h	Valor (Lo)	01h	
CRC Lo	CRC Lo	CRC Lo	CRC Lo	
CRC Hi	CRC Hi	CRC Hi	CRC Hi	

Tabela 5.2.3 Requisição e resposta quando em escrita

No caso de uma requisição inválida ou algum erro de comunicação o protocolo prevê o envio de respostas de exceção por parte do *slave*. A única mensagem de exceção implementada é a de código 04 - server *device failure* (falha do dispositivo servidor). Essa mensagem será enviada nas seguintes condições:

- Endereço do registrador ilegal, leitura/escrita: o *master* tentou ler/escrever em um endereço não disponível.
- Valor ilegal: o *master* tentou escrever um valor não reconhecido.
- Range de leitura ilegal: o *master* tentou ler mais registradores do que o permitido, ou seja, 1.

5.3 Controlando o inversor via Modbus

ATENÇÃO!

Configure os parâmetros de seleção de comando (P301) e referência de frequência (P302) para Modbus apenas após a validação e testes preliminares do motor e carga a serem acionados. Risco de acionamento involuntário.

Para o acionamento do inversor um conjunto de registradores foi definido com as funções básicas de comando. Esses registradores são descritos Tabela 5.3.1

Registrador	Função
4097	Listagem do número total de parâmetros: retorna o número total de parâmetros do inversor. Registrador <i>read only</i> . Útil para debug de comunicação.
4101	ON/OFF: escrevendo o valor 1 neste registrador a saída do inversor é acionada, escrevendo o valor 0, a saída é desacionada. Funcionamento idêntico ao das teclas ON e OFF (respectivamente) da IHM.
4103	Incrementa/Decrementa frequência: escrevendo o valor 1 neste registrador a frequência de referência é incrementada em 0.1 Hz. Escrevendo o valor 0 a frequência é decrementada em 0.1 Hz. Esta ação só tem efeito quando a saída está acionada (inversor ON). Funcionamento idêntico ao das teclas "+" e "-" da IHM.
4105	Reset: em uma condição de erro, sentando-se esse registrador como valor 1, o erro é resetado. Mesmo efeito de pressionar a tecla OFF da IHM no caso de erro.
4106	Frequência de saída: seta a frequência de saída de acordo com o valor escrito no registrador. O valor deve ser um inteiro positivo de 16 bits (tamanho padrão de um holding register) conferindo a esse campo um range de 0 a 32767. O valor de frequência tem precisão de uma casa decimal, no entanto como essa função aceita apenas valores inteiros, o valor desejado de frequência deve ser multiplicado por 100. Exemplo: a frequência desejada é 46.80 Hz, dessa forma o valor que deve ser escrito no registrador é 4680.
4107	Sentido de giro: seta o sentido de giro. Escrevendo 0, o sentido é normal, escrevendo 1 o sentido é reverso

Tabela 5.3.1 - Registradores

5.4 Recomendações de implementação da comunicação Modbus

A seguir são descritas algumas recomendações e cuidados para auxiliar na correta implementação da comunicação *Modbus*.

- Quando há ligação entre dispositivos e estes encontram-se no mesmo edifício, porém, em painéis diferentes, recomenda-se que seja garantido a equipotencialização do aterramento.
- Quando há ligação entre dispositivos e estes encontram-se em edifícios diferentes, recomendamos o uso de conversores RS-485 para fibra óptica isolando o sinal. Quando não for possível, recomendamos que seja garantido a equipotencialização do aterramento.
- Quando necessário prolongar a RS-485 por mais de 1000 metros ou quando existir infraestrutura de rede muito próxima a locais de elevada interferência eletromagnética, recomenda-se o uso de conversores RS-485 para fibra óptica.
- Utilizar sempre os cabos indicados no manual, de boa qualidade que estão de acordo com a EIA/TIA-485. Quando isso não for possível, certifique-se que eventuais adaptadores ou conversores estão devidamente conectados e protegidos de interferência eletromagnética.
- Recomenda-se diminuir o baudrate no caso de maiores extensões de cabeamento.
- Não se recomenda alterar os parâmetros do inversor via comunicação Modbus a menos que seja imprescindível. A alteração de parâmetros deve ser sempre realizada com cautela, preferencialmente com todo o sistema fora de operação.
- Nas fases de comissionamento do sistema recomenda-se deixar o valor do parâmetro P704 (Temporizador *watchdog*) em OFF de modo que erros de comunicação não sejam gerados desnecessariamente. Este parâmetro deve ser ajustado conforme a robustez da comunicação do sistema em operação.

Capítulo 6 – Especificações Técnicas

Dovômotvos	Modelo					
Parâmetros	XF2-05	XF2-10	XF2-20	XF2-30	XF2-50	
Potência máxima do motor em CV	0,5 CV	1 CV	2 CV	3 CV	5 CV	
Corrente nominal de saída	2,6 A	4,0 A	7,3 A	10 A	16 A	
Corrente máxima de saída	3,4 A	5,2 A	9,5 A	15 A	24 A	
Corrente máxima de entrada	5,1 A	7,8 A	14,3 A	18 A	18 A	
Frenagem reostática, resistor ≥ 30 ohms	NÃO			SIM		
Alimentação	Monofásico / Bifásico			Monofási co bifásico ou trifásico	Trifásico	
Tensão de entrada	200 a 240 Vrms					
Frequência de entrada	50 a 60 Hz					
Frequência de saída		0 a 500 Hz	0 a 60 Hz			
Frequência de chaveamento	5k, 10k e 15 kHz					
Tipo de controle	V/f e Quadrático					
Grau de proteção	IP20					
Temperatura de operação	0 a 50 °C					
Umidade relativa	5 a 90%			10 a 90%		
Entrada analógica	1 entrada (0 a 10 V, 0 a 20 mA e 4 a 20 mA)					
Saída analógica	1 saída (0 a 10 V, 0 a 20 mA e 4 a 20 mA)					
Entrada digital	4 entradas digitais					
Saída a relé	1 contato NA/NF (7 A/220 V)					
Comunicação	Modbus RTU					
Tensão de saída em frequência máxima	220 Vac Trifásico					

Capítulo 7 - Garantia

A Ageon Electronic Controls Ltda, assegura aos proprietários-consumidores dos seus produtos, garantia contra qualquer defeito de material ou fabricação conforme o link: https://ageon.com.br/garantia/

www.ageon.com.br

(48) 3028-8878 (48) 99996-0430

- B blog.ageon.com.br
- f facebook.com/AgeonElectronicControls
- instagram.com/ageonelectroniccontrols
- ▼ twitter.com/AgeonElectronic
- youtube.com/c/AgeonBr
- in linkedin.com/company/ageon-electronic-controls